Search results for "Protein–protein interaction"

showing 10 items of 69 documents

2020

Teraryl-based alpha-helix mimetics have resulted in efficient inhibitors of protein-protein interactions (PPIs). Extending the concept to even longer oligoarene systems would allow for the mimicking of even larger interaction sites. We present a highly efficient synthetic modular access to quateraryl alpha-helix mimetics, in which, at first, two phenols undergo electrooxidative dehydrogenative cross-coupling. The resulting 4,4′-biphenol is then activated by conversion to nonaflates, which serve as leaving groups for iterative Pd-catalyzed Suzuki-cross-coupling reactions with suitably substituted pyridine boronic acids. This work, for the first time, demonstrates the synthetic efficiency of …

010405 organic chemistryPeptidomimetic010402 general chemistryElectrosynthesis01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesProtein–protein interactionCatalysischemistry.chemical_compoundchemistryPyridinePhenolsPhysical and Theoretical ChemistryTrifluoromethanesulfonateAlpha helixCatalysts
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

CellMap visualizes protein-protein interactions and subcellular localization

2018

Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers.

0301 basic medicineBioinformaticssubcellular locationContext (language use)BiologyJavaScriptGeneral Biochemistry Genetics and Molecular BiologyChemical Biology of the CellProtein–protein interactionprotein-protein interaction03 medical and health sciencesUploadHuman–computer interactionGeneral Pharmacology Toxicology and Pharmaceuticscomputer.programming_languagebiological visualization030102 biochemistry & molecular biologyGeneral Immunology and MicrobiologySoftware Tool ArticleNoveltyArticlesGeneral MedicineSubcellular localizationddc:ComputingMethodologies_PATTERNRECOGNITION030104 developmental biologyNeurosciencecomputerF1000Research
researchProduct

Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves

2018

© 2018 Balan, Ibáñez, Dandekar, Caruso and Martinelli. A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46–68 million reads with an alignment percentage of 72.95–86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pecti…

0301 basic medicineHuanglongbing HLB citrus protein–protein interaction network transcriptomics RNA-SeqPlant BiologyHuanglongbingRNA-SeqPlant Sciencelcsh:Plant cultureBiologycitrusTranscriptometranscriptomics03 medical and health sciencesExpansinSettore AGR/07 - Genetica AgrariaHeat shock proteinGenetics2.1 Biological and endogenous factorslcsh:SB1-1110RNA-SeqAetiologyGeneTranscription factorOriginal Research2. Zero hungerGeneticsHuanglongbing; HLB; citrus; protein–protein interaction network; transcriptomics; RNA-SeqPectinesteraseSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHLB030104 developmental biologyPectate lyaseprotein–protein interaction networkprotein-protein interaction networkBiotechnologyFrontiers in Plant Science
researchProduct

2017

Proteins containing glutamine repeats (polyQ) are known to be structurally unstable. Abnormal expansion of polyQ in some proteins exceeding a certain threshold leads to neurodegenerative disease, a symptom of which are protein aggregates. This has led to extensive research of the structure of polyQ stretches. However, the accumulation of contradictory results suggests that protein context might be of importance. Here we aimed to evaluate the structural context of polyQ regions in proteins by analysing the secondary structure of polyQ proteins and their homologs. The results revealed that the secondary structure in polyQ vicinity is predominantly random coil or helix. Importantly, the region…

0301 basic medicineMultidisciplinary030102 biochemistry & molecular biologybiologyChemistrySaccharomyces cerevisiaeStructural contextContext (language use)Protein aggregationbiology.organism_classificationRandom coilProtein–protein interactionCell biology03 medical and health sciences030104 developmental biologyProtein structureProtein secondary structurePLOS ONE
researchProduct

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

2017

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

0301 basic medicinePhysiologyProtein Extractionlcsh:MedicineYeast and Fungal ModelsPolymerase Chain ReactionBiochemistryGreen fluorescent proteinEpitopesDatabase and Informatics MethodsGene Expression Regulation FungalImmune PhysiologyProtein purificationMacromolecular Structure AnalysisMedicine and Health SciencesProto-Oncogene Proteins c-myclcsh:ScienceStainingExtraction TechniquesImmune System ProteinsMultidisciplinarybiologyGene targetingProtein subcellular localization predictionMembrane StainingExperimental Organism SystemsGene TargetingArtifactsSequence AnalysisPlasmidsResearch ArticleProtein StructureSaccharomyces cerevisiae ProteinsBioinformaticsRecombinant Fusion ProteinsGenetic VectorsGreen Fluorescent ProteinsImmunologySaccharomyces cerevisiaeHemagglutinins ViralSaccharomyces cerevisiaeComputational biologyResearch and Analysis MethodsGreen Fluorescent ProteinGenomic InstabilityAntibodiesProtein–protein interactionProto-Oncogene Proteins c-mycSaccharomyces03 medical and health sciencesModel OrganismsAmino Acid Sequence AnalysisMolecular BiologyStaining and Labelinglcsh:ROrganismsFungiBiology and Life SciencesProteinsbiology.organism_classificationFusion proteinYeastLuminescent Proteins030104 developmental biologySpecimen Preparation and Treatmentlcsh:QProtein Structure NetworksPLOS ONE
researchProduct

Cell Type-Specific Tandem Affinity Purification of the Mouse Hippocampal CB1 Receptor-Associated Proteome

2016

G protein coupled receptors (GPCRs) exert their effects through multiprotein signaling complexes. The cannabinoid receptor type 1 (CB1) is among the most abundant GPCRs in the mammalian brain and involved in a plethora of physiological functions. We used a combination of viral-mediated cell type-specific expression of a tagged CB1 fusion protein (CB1-SF), tandem affinity purification (TAP) and proteomics on hippocampal mouse tissue to analyze the composition and differences of CB1 protein complexes in glutamatergic neurons and in GABAergic interneurons. Purified proteins underwent tryptic digestion and were identified using deep-coverage data-independent acquisition with ion mobility separa…

0301 basic medicineProteomeGlutamic AcidBiologyProteomicsHippocampusBiochemistryChromatography AffinityProtein–protein interactionMice03 medical and health sciencesGlutamatergicReceptor Cannabinoid CB1AnimalsProtein Interaction Mapsgamma-Aminobutyric AcidG protein-coupled receptorNeuronsTandem affinity purificationGeneral ChemistryFusion proteinEndocannabinoid system030104 developmental biologynervous systemBiochemistryProteomeProtein BindingSignal TransductionJournal of Proteome Research
researchProduct

Adhesion GPCR-Related Protein Networks

2016

Adhesion G protein-coupled receptors (aGPCRs/ADGRs) are unique receptors that combine cell adhesion and signaling functions. Protein networks related to ADGRs exert diverse functions, e.g., in tissue polarity, cell migration, nerve cell function, or immune response, and are regulated via different mechanisms. The large extracellular domain of ADGRs is capable of mediating cell-cell or cell-matrix protein interactions. Their intracellular surface and domains are coupled to downstream signaling pathways and often bind to scaffold proteins, organizing membrane-associated protein complexes. The cohesive interplay between ADGR-related network components is essential to prevent severe disease-cau…

0301 basic medicineScaffold protein03 medical and health sciences030104 developmental biologyNectinChemistryCell migrationSignal transductionCell adhesionIntracellularProtein–protein interactionG protein-coupled receptorCell biology
researchProduct

Protein-protein interactions can be predicted using coiled coil co-evolution patterns

2016

AbstractProtein-protein interactions are sometimes mediated by coiled coil structures. The evolutionary conservation of interacting orthologs in different species, along with the presence or absence of coiled coils in them, may help in the prediction of interacting pairs. Here, we illustrate how the presence of coiled coils in a protein can be exploited as a potential indicator for its interaction with another protein with coiled coils. The prediction capability of our strategy improves when restricting our dataset to highly reliable, known protein-protein interactions. Our study of the co-evolution of coiled coils demonstrates that pairs of interacting proteins can be distinguished from no…

0301 basic medicineStatistics and ProbabilityComputational biologyCorrelated evolutionGeneral Biochemistry Genetics and Molecular BiologyProtein Structure SecondaryProtein–protein interactionConserved sequenceEvolution Molecular03 medical and health sciencesProtein-protein interactionModelling and SimulationImmunology and Microbiology(all)Coiled coilGeneticsCoiled coilPhysicsMedicine(all)030102 biochemistry & molecular biologyGeneral Immunology and MicrobiologyAgricultural and Biological Sciences(all)Models GeneticBiochemistry Genetics and Molecular Biology(all)Applied MathematicsA proteinProteinsGeneral Medicine030104 developmental biologyModeling and SimulationGeneral Agricultural and Biological SciencesJournal of Theoretical Biology
researchProduct

The latent geometry of the human protein interaction network

2017

Abstract Motivation A series of recently introduced algorithms and models advocates for the existence of a hyperbolic geometry underlying the network representation of complex systems. Since the human protein interaction network (hPIN) has a complex architecture, we hypothesized that uncovering its latent geometry could ease challenging problems in systems biology, translating them into measuring distances between proteins. Results We embedded the hPIN to hyperbolic space and found that the inferred coordinates of nodes capture biologically relevant features, like protein age, function and cellular localization. This means that the representation of the hPIN in the two-dimensional hyperboli…

0301 basic medicineStatistics and ProbabilityGeometric analysisComputer scienceHyperbolic geometrySystems biologyComplex systemContext (language use)GeometryBiochemistryProtein–protein interaction03 medical and health sciencesInteraction networkHumansProtein Interaction MapsRepresentation (mathematics)Cluster analysisMolecular BiologySystems BiologyHyperbolic spaceProteinsFunction (mathematics)Original PapersComputer Science ApplicationsComputational Mathematics030104 developmental biologyComputational Theory and MathematicsEmbeddingSignal transductionAlgorithmsSignal Transduction
researchProduct